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LElTER TO THE EDITOR 
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Takashi Nagatani 
College of Engineering, Shizuoka University, Hamamatsu 432, Japan 

Received 19 January 1987 

Abstract. A position space renormalisation group method is presented to analyse the scaling 
structure of the higher moments of the current distribution in random linear resistor 
networks at the percolation threshold. The recursion relation for the current distribution 
is derived under the renormalisation transformation. The current fraction assigned to each 
bond is represented by a random multiplicative process. An infinite set of exponents is 
calculated to describe the scaling properties of the current distribution. 

Recently, there has been increasing interest in the critical behaviour of random resistor 
networks. Different properties of such systems are found to probe different critical 
exponents, or fractal dimensions. It has only been very recently that attention has 
turned to the distribution of voltage drops across each conductor in a resistor network 
(de Arcangelis et a1 1985a, b). The study of percolating resistor networks led to the 
identification of several infinite sets of exponents, relevant to their physical properties. 
The infinite set of exponents provides detailed microscopic information about the 
structure of the network, in addition to the network conductivity. There are the two 
infinite sets of exponents for the higher moments of the voltage distribution on a linear 
resistor network and the resistance of non-linear networks (Blumenfeld et a1 1986). 
In order to discuss the voltage distribution analytically, they introduced a simple 
hierarchical model. 

In this letter, we present a renormalisation group method for the scaling structure 
of the current distribution on random linear resistor networks. We derive the recursion 
relation for the current distribution under a renormalisation transformation. The 
current distribution is represented by a random multiplicative process. We find the 
infinite set of exponents for the higher moments of the current distribution. 

We restrict ourselves to the bond percolation problem on the square lattice. The 
lattice is divided into cells of linear dimension b, a probability p is associated with 
each occupied bond in the cell and the cells are rescaled to a single bond. The simplest 
example is indicated in figure l (a) .  Each cell, divided by the broken lines, is renor- 
malised to a single bond of linear dimension b = 2. We note that our scale factor is 
different in comparison with the original decimation transformation (Young and 
Stinchcombe 1975, Nagatani 1986,1987). The entries and exits of current are indicated 
by arrows. The probability R( p )  that a cell of size b is connected between the entries 
and the exits is given by 
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Figure 1. ( a )  Illustration of the dividing and rescaling of a b = 2 cell for bond percolation 
on the square lattice. Arrows indicate the entry and exit of current. Broken lines indicate 
boundaries dividing the square lattice into the cells. ( b )  Spanning configurations that arise 
in the renormalisation group. 

where the fm is the probability of a spanning configuration a. At the fixed point 
p* = R ( p * ) ,  an incipient infinite cluster appears. The fractal dimensions D b  and D, 
of the backbone and the cutting bonds are given by 

(2) D b  = h(( &))*/In b D, = In(( nc))*/ln 6 

where the asterisk indicates the value at the fixed point and the (( nb)) and (( n,)) are the 
average numbers of backbone bonds and cutting bonds within a spanning cluster if 
the cell is connected. Figure 1( 6)  shows spanning configurations for a 6 = 2 cell. The 
(( nb)) and (( n,)) are respectively given by 

(( nb)) = (4p4 + 2 x 4p3q + 2 x 2p2q')/ R ( p )  

((nc))= (2x4p3q+2x2p2q2)/R(p)  (3) 

where R (  p)  = 2p2 -p4. 
We derive the above fractal dimensions and the infinite set of exponents from the 

moments of the current distribution. Each bond of the percolating network can be 
characterised by the fraction of the total current flowing through it, i = Z/Z,ot. The 
moments of the current distribution and corresponding exponents [k can be defined by 

where the n(i) is the number of bonds with a current fraction [ the r b  is the set of 
the backbone bonds and the ( ) represents the averaje. 

After the renormalisation, the current fraction I , (L)  on any backbone bond j is 
given by 

& ( L )  = c ( k ) f k ( L / b )  ( 5 )  

where the L represents the size of the system, the 6 is the scale factor and the c ( k )  
indicates the current fraction of the backbone bond j within the cell k. After many 
repeated renormalisations at the fixed point, the relationship ( 5 )  becomes a random 
multiplicative process of the random variable i which is the current fraction within 
the cell at the fixed point. The relation ( 5 )  is not the conventional scaling relation but 
represents a random multiplicative process. It is the most important feature of our 
approach, characterising the scaling structure of the current distribution. 



Letter to the Editor L419 

From ( 5 )  we can construct an infinite set of exponents f k :  

fk=lOg(T ff)(lOg L)-'=lOg(x U cu(c JU Ffu))(lOg b)-'  ( 6 )  

where Cu is the probability of a particular spanning configuration a when the cell is 
connected: Cu = E / R ( p * ) .  For the b = 2  case (figure l ( b ) ) ,  we obtain 

f k  = log{[ P*4/ R ( P* )1[4( 1 / 2) 1 + [4P*3q*/ R P*) 1[2( 1 / 1 1 1 
+ [2p*2~*2/~(P*)1[2(l/l)kl}/log 2. (7) 

The exponents fo and f m  agree with the fractal dimensions Db and 0, of the backbone 
and the cutting bonds, shown by equations (2) and (3). In figure 2, we show the plot 
of the exponent fk  as a function of k. Eliminating L in favour of L1 ( L ,  is the number 
of links), we compare &(  = fk / fm)  with the other available estimates and the hierarchical 
model (H model) of de Arcangelis et a1 (1985a, b) in table 1. 

k 

Figure 2. Plot of the exponent tk as a function of k, based on the predictions of the 
renormalisation group method. 

Table 1. List of exponents from the renormalisation group approach compared with other 
sources. 

k RG Data H model 

0 2.135 2.16", 2.11b 2.00 
1 1.635 1.58", 1.73' 1.585 
2 1.338 1.30". 1.297d 1.322 
3 1.175 1.12a 1.17 
4 1.089 1.0lS 1.09 

a de Arcangelis er a/ (1985a, b). 
Coniglio (1982). 
Lyklema and Kremer (1984). 
Zabolitsky (1984). 
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To summarise, we present the renormalisation group method to derive the infinite 
set of exponents for the current distribution at the percolation threshold. It is shown 
that the current fraction assigned to each bond is represented by a random multiplicative 
process of the cell current fraction. The exponents lo and agree with the fractal 
dimensions of the backbone and cutting bonds, derived by the other renormalisation 
group method. Our renormalisation group approach is completely general and is not 
limited to the particular cell considered here. 
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